CLINICAL AND PATHOLOGICAL FEATURES OF AN AUTOSOMAL DOMINANT, ADULT-ONSET LEUKODYSTROPHY SIMULATING CHRONIC PROGRESSIVE MULTIPLE SCLEROSIS
J. D. Schwankhaus, D. A. Katz, R. Eldridge, S. Schlesinger, H. McFarland

CEREBELLAR ATROPHY IN PATIENTS WITH LONG-TERM PHENYTOIN EXPOSURE AND EPILEPSY
G. C. Ney, G. Lantos, W. B. Barr, N. Schaul

CLINICAL CORRELATES OF CORTICAL AND NUCLEUS BASALIS PATHOLOGY IN ALZHEIMER DEMENTIA
W. Samuel, R. D. Terry, R. DeTeresa, N. Butters, E. Masliah

SCREENING FOR COGNITIVE IMPAIRMENT IN OLDER INDIVIDUALS: VALIDATION STUDY OF A COMPUTER-BASED TEST
R. C. Green, J. Green, J. M. Harrison, M. H. Kutner

OVERVIEW OF CLINICAL TRIALS OF HYDERGINE IN DEMENTIA
L. S. Schneider, J. T. Olin

β-AMYLOID PROTEIN IMMUNOREACTIVITY IN SKIN IS NOT A RELIABLE MARKER OF ALZHEIMER'S DISEASE: AN AUTOPSY-CONTROLLED STUDY
Book Reviews

Five Books on Ataxia
Robert D. Currier, MD 744

Neuroanatomy: A Review With Questions and Explanations
Robert Holloway, MD 745

Language: Structure, Processing, and Disorders
Andrew Kertesz, MD, FRCPC 746

Therapeutic Claims in Multiple Sclerosis
G. C. Ebers, MD, FRCPC 746

Letters to the Editor

The Effect of Carbamazepine on Serum Lipid Levels
Mary L. Wagner, PharmD, MS; Ron Preblick, RPh; William Levine Hall 748

In Reply
Jouko I. T. Isojärvi, MD, PhD; Vilho V. Myllylä, MD, PhD; Arto J. Pakarinen, MD, PhD 749

Anterior Choroidal or Anterior Temporal Artery
Charles Hodge, MD 749

In Reply
John Hart, Jr, MD, Barry Gordon, MD, PhD 749

The Association Between Apolipoprotein E Allele ε4 and Late-Onset Alzheimer's Disease: Pathogenic Relationship or Differential Survival Bias
Jack E. Riggs, MD, Robert W. Keefover, MD 750

Therapy of Patients With Parkinson's Disease
George W. Paulson, MD 754

Clinical and Pathological Features of an Autosomal Dominant, Adult-Onset Leukodystrophy Simulating Chronic Progressive Multiple Sclerosis
John D. Schwankhaus, MD; David A. Katz, MD; Roswell Eldridge, MD; Sandra Schlesinger, MS; Henry McFarland, MD 757

Original Contributions

American Medical Association
Physicians dedicated to the health of America

James S. Todd, MD
Executive Vice President
Kenneth E. Monroe
Deputy Executive Vice President
Lanny E. Joyce
Senior Vice President
George D. Lundberg, MD
Editor-in-Chief, Scientific Publications
Robert L. Kennett
Vice President, Publishing
Nawin Gupta, PhD
Director, Publishing Operations Division
Cheryl Ivenson
Director, Editorial Processing Division

Michael D. Springer
Associate Publisher
John P. Cahill
Manager, Advertising Sales
Geoffrey A. Flick
Manager, Marketing Services

Cerebellar Atrophy in Patients With Long-term Phenytoin Exposure and Epilepsy
Gershon C. Ney, MD; George Lantos, MD; William B. Barr, PhD; Neil Schaul, MD

Clinical Correlates of Cortical and Nucleus Basalis Pathology in Alzheimer Dementia
William Samuel, MD, PhD; Robert D. Terry, MD; Richard DeTeresa; Nelson Butters, PhD; Eliezer Masliah, MD

Screening for Cognitive Impairment in Older Individuals: Validation Study of a Computer-Based Test
Robert C. Green, MD; Joanne Green, PhD; Joan M. Harrison, RNC, MN; Michael H. Kutner, PhD

Overview of Clinical Trials of Hydergine in Dementia
Lon S. Schneider, MD, Jason T. Olin, PhD

β-Amyloid Protein Immunoreactivity in Skin Is Not a Reliable Marker of Alzheimer’s Disease: An Autopsy-Controlled Study
Outi Heinonen, MSc; Hilkka Soininen, MD, PhD; Stina Syrjänäen, DDS, PhD; Heikki Neitaaamäki, MD, PhD; Leo Paljärvi, MD, PhD; Olli Kosunen, MD; Kari Syrjänäen, MD, PhD; Paavo Riekkinen, Sr, MD, PhD

Stimulus Timing Effects on Wada Memory Testing
David W. Loring, PhD; Kimford J. Meador, MD; Gregory P. Lee, PhD; Don W. King, MD; Brian B. Gallagher, MD, PhD; Anthony M. Murro, MD; Joseph R. Smith, MD

Astartia Without Abasia due to Peripheral Neuropathy
Keizo Hirayama, MD; Masashi Nakajima, MD; Mitsuru Kawamura, MD; Yorio Koguchi, MD

Teaching Neurology Residents in the Outpatient Setting
Douglas J. Gelb, MD, PhD

Remote Memory and Lexical Retrieval in a Case of Frontal Pick’s Disease
John R. Hodges, MD, Jennifer M. Gurd, PhD

Lupus Erythematosus and Miller-Fisher Syndrome
Roland Bingisser, MD; Rudolf Speich, MD; Adriano Fontana, MD; Jürg Gmür, MD; Barbara Vogel, MD; Theodor Landis, MD

Index to Advertisers
Calendar
Classified Advertising
Instructions for Authors—See July 1994 issue, page 699.
Cerebellar Atrophy in Patients With Long-term Phenytoin Exposure and Epilepsy

Gershon C. Ney, MD; George Lantos, MD; William B. Barr, PhD; Neil Schaul, MD

Objective: Cerebellar atrophy has been noted in patients with phenytoin exposure. This finding has been attributed by some investigators to seizures, but by others to phenytoin. Previous studies included patients with mental retardation and convulsive seizures. We undertook a study in a group of nonretarded patients with partial epilepsy to better elucidate the cause of the cerebellar atrophy.

Interventions: All patients and controls underwent magnetic resonance imaging.

Main Outcome Measure: Degree of cerebellar atrophy.

Results: The magnetic resonance imaging scans were reviewed in a blind fashion. A rating was assigned to each scan based on the degree of cerebellar atrophy. Cerebellar atrophy was significantly more pronounced in patients than in controls. No correlation was found between cerebellar atrophy and variables reflective of seizure severity or degree of phenytoin exposure.

Patients: Thirty-six patients with partial epilepsy and long-term phenytoin exposure were selected from a consecutive sample of admissions to an epilepsy center. Patients with histories of ethanol abuse, perinatal distress, anoxia, status epilepticus, or neurodegenerative disorders were excluded. Age- and sex-matched controls were selected from a pool of healthy volunteers and patients who had undergone magnetic resonance imaging for complaints of headache and dizziness.

Conclusions: Cerebellar atrophy may be seen in phenytoin-exposed patients with epilepsy in the absence of generalized tonic-clonic seizures or preexistent brain damage. Whether it is the phenytoin or the seizures that play the primary etiologic role remains unanswered. These factors may be synergistic.

From the Departments of Neurology (Drs Ney, Lantos, Barr, and Schaul), Radiology (Dr Lantos), and Psychiatry (Dr Barr), Long Island Jewish Medical Center and Hillside Hospital, Albert Einstein College of Medicine, New Hyde Park, NY.

CEREBELLAR ATROPHY has been described in patients who have seizures and who are exposed to phenytoin. The cause of this atrophy is controversial because it remains unclear as to whether the cerebellar atrophy results from phenytoin toxicity or from the effects of recurrent seizures. Animal studies designed to investigate the putative effects of cerebellar toxicity of phenytoin have yielded conflicting results. Few human studies have been undertaken. Clinical studies, to date, have involved patients with tonic-clonic seizures and with diffuse central nervous system insults. In addition, to our knowledge, none of the studies have used magnetic resonance imaging (MRI). We report on cerebellar size and morphological features in a group of phenytoin-exposed, nonretarded patients with partial epilepsy who were studied with MRI. The patient group was compared with an age- and sex-matched control group. Patients with potential sources of cerebellar atrophy other than seizures or phenytoin exposure were excluded.

RESULTS

Cerebellar ratings for patients and controls are presented in the Table. The pa-
PATIENTS AND METHODS

PATIENTS

The patients were selected from a group of 119 consecutive evaluations carried out from September 1987 through July 1991. All patients had undergone evaluations for intractable epilepsy in the Comprehensive Epilepsy Center of the Long Island Jewish Medical Center, New Hyde Park, NY. A total of 36 patients with a history of phenytoin exposure longer than 4 years were selected. Exclusionary criteria included a Wechsler Adult Intelligence Scale-Revised full-scale intelligence quotient of less than 70, a history of ethanol abuse, perinatal distress, anoxia, status epilepticus, and neurodegenerative disorders. A control group of 35 people was selected from a pool of healthy volunteers and individuals who had undergone MRI scans for complaints of headache and dizziness. The control group consisted of 15 women and 20 men ranging in age from 19 to 48 years (mean age, 32.8 years).

The study sample consisted of 16 women and 20 men ranging in age from 21 to 54 years (mean age, 34.1 years). Historical data, including seizure frequency, duration of epilepsy, history of febrile seizures, presence of secondary generalization, years of phenytoin exposure, maximum phenytoin dosage, and history of acute reversible cerebellar syndrome, were obtained through a chart review. Antiepileptic drugs (other than phenytoin) to which the patient had been exposed were also ascertained. Data were verified in most cases by a subsequent telephone interview with patients. All patients were administered the Wechsler Adult Intelligence Scale-Revised as part of their clinical workup. The sample's mean level of intellectual functioning was in the "average" range (Wechsler Adult Intelligence Scale-Revised full-scale intelligence quotient, 90.1; range, 70 to 132). The mean length of education was 13.2 years (range, 11 to 20 years). The mean duration of epilepsy (defined as chronic, recurrent seizures) was 19.4 years, with a range of 3 to 44 years (it should be noted that the patient with the duration of 3 years had been treated with phenytoin for 7 years before the epilepsy became chronic). Sixteen patients (44%) experienced partial complex seizures exclusively, while 20 patients experienced partial complex seizures with secondary generalization. The mean seizure frequency was 8.4 per month, with a range of two to 30 per month. The mean duration of phenytoin exposure was 13.7 years, with a range of 4 to 30 years. The mean maximum dosage of phenytoin therapy was 450 mg. The range of maximum daily dosage of phenytoin was 300 to 700 mg.

All of these patients with intractable seizures had received various antiepileptic medications, other than phenytoin, at some point during the course of their epilepsy. These drugs included carbamazepine (all of the patients), valproic acid (28 of 36 patients), benzodiazepines (26 of 36 patients), phenobarbital (25 of 36 patients), primidone (17 of 36 patients), acetazolamide (eight of 36 patients), methsuximide (five of 36 patients), and ethosuximide (three of 36 patients).

METHODS

All patients and controls underwent MRI scans on a 1.0-T whole-body MRI system (Magnetom, Siemens, Iselin, NJ). The imaging protocol included three-dimensional, gradient-echo, fast, low-angle-shot images acquired in the coronal plane. The methodology for this acquisition sequence has been described elsewhere.51 This yielded 64 contiguous coronal slices of 3.1-mm slice thickness. Also obtained were spin-echo images in axial and coronal planes using proton density and T1-weighted sequences (Figure). Scans from both groups were reviewed by a neuroradiologist (G.L.) who was blind to the clinical status of the subject (patient vs control). For the qualitative ratings of the MRI scans, emphasis was placed on the appearance of the cerebellar hemispheres as the cerebellar vermis is variable within normal control populations.12 The degree of atrophy was judged by the size of the sulci and folia. Based on the degree of cerebellar atrophy seen on MRI, the patients and controls were divided into four groups as follows: group I, normal; group II, mild atrophy; group III, moderate atrophy; and group IV, severe atrophy. X2 Analysis was then used to analyze the ratings differences between the patient and control groups. The relationship between the patient group's atrophy ratings and the variables reflective of the degree of phenytoin exposure was analyzed using rank-order correlations (Spearman r). The phenytoin-related variables included maximum dosage and duration of phenytoin therapy. Atrophy ratings and variables reflective of seizure severity were also compared using rank-order correlations (Spearman r). The seizure-related variables included duration of epilepsy, seizure frequency, and presence of secondary generalization.

To our knowledge, this is the first study carried out to explore the etiologic role of phenytoin in cerebellar atrophy that employed a patient population with an average level of intelligence. This investigation was limited to patients with partial epilepsy. The cerebellar size of the patients was compared with that of age- and sex-matched controls. We found a group difference between the phenytoin-exposed epilepsy population and the controls, as the patients had significantly smaller cerebella.
The phenomenon of cerebellar insult in the setting of epilepsy was observed by Spielmeyer in 1930. He described cerebellar atrophy in postmortem examinations of the brains of patients who had epilepsy with convulsive seizures. Zimmerman made similar observations several years later. He provided detailed clinical descriptions of 16 patients in addition to his pathologic findings. All his patients had frequent convulsions, often in the setting of severe hypoxia resulting from terminal pneumonia, pertussis, and other causes of respiratory failure. These findings predated the introduction of phenytoin, and suggest that seizures alone can cause cerebellar atrophy. However, anoxia may have been a significant contributing factor. With the introduction of phenytoin and its continued use, case reports of acute and chronic cerebellar toxicity have appeared. To confirm these observations, several formal investigations have been undertaken in humans. Dam reported an autopsy series involving 32 brains from a group of institutionalized patients with tonic-clonic seizures that were compared with controls. The patient group included individuals with frequent convulsions and multiple episodes of status epilepticus. Data are not provided regarding the cognition of the patients. Fewer Purkinje's cells were found in the patients with seizures than in the nonepileptic controls. This finding was most striking in the subgroup of patients with the greatest frequency of convulsive seizures or multiple episodes of status epilepticus. The subgroup of patients with the most extensive phenytoin exposure also had fewer Purkinje's cells, but most of these patients had the most severe epilepsy. Patients with long-term phenytoin exposure and infrequent seizures had Purkinje cell densities that did not differ significantly from those of controls. It was concluded that Purkinje cell loss was related to frequent convulsions and not to phenytoin exposure. Cerebellar atrophy is seen as part of a histopathologic constellation in individuals with perinatal insults. The possibility of preexistent global central nervous system damage, including cerebellar atrophy, cannot be excluded, as there are no details regarding cognition of this institutionalized population. The putative effects of phenytoin therapy may be inapparent in a group with preexistent cerebellar atrophy or atrophy caused by frequent convulsions.

Iivanainen et al reported on 131 mentally retarded patients with epilepsy and phenytoin exposure. The majority of the patients were severely retarded, with 83% having an intelligence quotient of less than 35. No controls were employed. The authors thought that cerebellar atrophy as diagnosed with pneumoencephalography correlated with a history of phenytoin intoxication and serum phenytoin levels. As in the previously mentioned study, the issue of possible preexistent congenital cerebellar pathology is not addressed. At most, one could only conclude that phenytoin may play a role with respect to cerebellar atrophy in brain-damaged individuals.

In the only investigation that we know of in which modern neuroimaging techniques were used, Ballenger et al compared the computed tomographic scans of 70 patients with seizures with those of a control group and failed to demonstrate cerebellar atrophy within the seizure group; 84% of the seizure group had had significant phenytoin exposure. Details of the epilepsy group are not available. Furthermore, mild cerebellar atrophy may have been missed on computed tomographic scans.

Cerebellar Atrophy Ratings for Patients and Controls

<table>
<thead>
<tr>
<th>Atrophy Rating</th>
<th>Patients (n=36)</th>
<th>Controls (n=36)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>15</td>
<td>33</td>
</tr>
<tr>
<td>Mild</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Moderate</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Severe</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

ALCMAN et al reported the results of cerebellar biopsies in five patients with intractable epilepsy and phenytoin exposure. This series is unique in that it presents the cerebellar histopathologic findings from cases involving live patients with intractable epilepsy in whom clinical information is well documented. Several of the patients had frequent convulsions and episodes of status epilepticus. However, two of the patients had frequent complex partial seizures and never had a convolution. Marked loss of Purkinje's cells was demonstrated in every case. This series suggests that partial seizures without convulsive movements may play a significant role in causing cerebellar atrophy.

Several studies in animals have been carried out over the last three decades to confirm or refute the possibility that phenytoin is toxic to the cerebellum. Ko kenge and Kutt reported a selective loss of Purkinje's cells in rats and cats intoxicated with phenytoin. Dam subsequently carried out similar experiments in pigs and monkeys, and failed to replicate the previous findings of Purkinje cell loss.

The neuropathology literature, predating the introduction of phenytoin, documents that convulsions are associated with cerebellar atrophy. Subsequent literature concerning phenytoin-induced cerebellar atrophy often involved patients with preexistent global central nervous system damage or frequent convulsions. The one study that reported seizure types included patients with status epilepticus and frequent convulsions. It is unclear whether sei-
Top left and top right, Magnetic resonance images of a 31-year-old patient with frequent partial complex seizures, no convulsions, and a 5-year exposure to phenytoin (400 mg/d); this patient's degree of cerebellar atrophy was severe. Bottom left and bottom right, Magnetic resonance images of a matched control.

Seizures, phenytoin, preexistent brain damage, or a combination of these factors results in the finding of cerebellar atrophy in these patients.

Our findings in a population with an average level of intelligence indicate that a certain proportion of patients with long-term phenytoin exposure and epilepsy but without preexisting diffuse brain damage develop cerebellar atrophy. We also noted that cerebellar atrophy was not uniquely related to tonic-clonic seizures, as 44% of our patients had only zero to five convulsions per lifetime. Furthermore, there was no correlation between the degree of cerebellar atrophy and the presence of tonic-clonic seizures. Our study supports the observations of Salcman et al. that phenytoin-exposed patients with partial complex seizures without generalization in the absence of diffuse brain insult may also develop cerebellar atrophy.

Our study was unable to clearly elucidate whether the cerebellar atrophy resulted from seizures or from exposure to phenytoin. The extent of cerebellar atrophy did not correlate with any of the studied clinical variables reflective of seizure severity or extent of phenytoin exposure. The inability to resolve this issue may have been from inadequate sample size or from the lack of sensitivity in quantifying phenytoin exposure and seizure severity. Alternatively, phen-
ytoin and seizures may act synergistically to cause cer-
ебellar atrophy.

Whether the cerebellar atrophy results from sei-
izes, phenytoin, or both remains unclear. However,
either explanation remains tenable. Focal seizures
have been demonstrated to cause brain damage at sites
remote from the seizure focus. 24 This is thought to
occur because the ictal discharge causes neuronal
excitation via connecting pathways, with the resultant
release of excitatory neurotransmitters. 25 It has also
been shown that experimentally induced epileptiform
activity in the cerebral cortex causes increased neu-
ronal firing in Purkinje's cells as well as in the dentate
nucleus. 26 The discharges are thought to be propa-
gated along the corticopontocerebellar tracts. Current
thinking implies that these projections are very active
physiologically and mediate significant information
transfer from cerebrum to cerebellum. 27,28 Thus, it is
feasible that focal seizures in humans mediate cell
injury in the cerebellum by inducing concomitant
aberrant discharges with resultant neuroexcitatory-
mediated damage. Phenytoin has a propensity for the
cerebellum, as the primary manifestation of acute
toxicity is a cerebellar syndrome. More recently, investi-
gators have implicated a specific binding site for
phenytoin in the vicinity of Purkinje cells and granule
cells. 29 Phenytoin has been demonstrated to induce
increased firing rates in cerebellar neurons. 30 While
some believe that this increased neuronal activity is
protective against cortical seizures, it may in fact be
harmful to the cerebellar neurons. Seizure-induced
neuronal excitability and phenytoin-induced neuronal
excitability may act in combination to cause cerebellar
atrophy.

The mechanism for the observed cerebellar atro-
yo remains unclear. To resolve this issue, larger pro-
spective studies will be required. As we are now in an
era in which there is a growing number of commonly used
antiepileptic drugs, more patients who have seizures but
have not been exposed to phenytoin will be available to
enroll in these studies. Future studies will be able to com-
pare phenytoin-exposed patients with phenytoin-naive
patients. Emerging radiographic techniques that ac-
curately quantify volumes of specific neuroanatomic
structures may prove helpful.

Accepted for publication July 1, 1993.

Presented in part at a meeting of the American Epi-

Reprint requests to Department of Neurology, EEG
Laboratory, Long Island Jewish Medical Center, New Hyde
Park, NY 11042 (Dr Ney).

REFERENCES

1. Hoffman WW. Cerebellar lesions after parenteral Dilantin administration. Neu-

2. Kokenge R, Kutt H, McDowell F. Neurological sequelae following Dilantin over-

3. Logan WJ, Freeman JM. Pseudodegenerative disease due to diphenylhydan-

5. Ghatak NR, Santosso RA, McKinney WM. Cerebellar degeneration following long-

6. McLain LW, Martain JT, Allen JH. Cerebellar degeneration due to chronic pheny-

7. Dam M. Number of Purkinje's cells after diphenylhydantoin intoxication in pigs.

8. Dam M. The number of Purkinje's cells in patients with grand mal epilepsy treated

9. Ivanainen M, Viukari M, Helle EP. Cerebellar atrophy in phenytoin-treated men-

10. Ashari M, Barr WB, Schau N, Bogherts B. Three dimensional fast low angle
shot imaging and computerized volume measurement of the hippocampus in
patients with chronic epilepsy of the temporal lobe. AJNR Am J Neuroradiol.

11. Koller WC, Glatt SL, Perlik S, Huckman MS, Fox JH. Cerebellar atrophy

12. Spielmeier W. The anatomic substratum of the convulsive state. Arch Neurol
Psychiatry. 1930;20:689-875.

14. Merrill HH. Sodium diphenylhydantoin in the treatment of convulsive seizures: toxic

1939;2:363-367.

18. Rapport RL, Shaw CM. Phenytoin-related cerebellar degeneration without sei-

20. Masur H, Elger CE, Ludolph AC, Galanski M. Cerebellar atrophy following acute

22. Ballenger CE, Lucke JF, King DW, El Gamal J, Brooks BS, Green JP. Cer-
ebellar atrophy in epilepsy and headache: lack of relationship to phenytoin.

23. Salzman M, Defendini R, Corrjell J, Gilman S. Neuropathological changes in

25. Clifford DB, Zorumski CF, Olney JW. Ketamine and MK-801 prevent degener-
ation of thalamic neurons induced by focal cortical seizures. Exp Neurol.

26. Julien RM, Laxer KD. Cerebellar responses to penicillin-induced cerebral cor-
tical ictal epileptiform discharge. Electroencephalogr Clin Neurophysiol.

27. Schmahmann JD. An emerging concept the cerebellar contribution to higher

29. Hammond MJ, Wilder BJ. Immunofluorescent evidence for a specific binding
site for phenytoin in the cerebellum. Epilepsia. 1983;24:269-274.

30. Julien RM, Halpern LM. Effects of diphenylhydantoin and other antiepileptic
drugs on epileptiform activity and Purkinje cell discharge rates. Epilepsia. 1972;
13:387-400.